Biomechanics effect of two implant system with different bone height under axial and non–axial loading conditions

Authors

  • Carlos Eduardo Datte São Paulo State University, São José dos Campos, São Paulo
  • Fabiana Barbi Datte Catholic University of Portugal, Viseu
  • Vinícius Anéas Rodrigues Faculty of Pindamonhangaba, Pindamonhangaba, São Paulo
  • Alexandre Luiz Souto Borges São Paulo State University, São José dos Campos, São Paulo
  • Júlio Ferraz Campos São Paulo State University, São José dos Campos, São Paulo
  • Renato Sussumu Nishioka São Paulo State University, São José dos Campos, São Paulo

DOI:

https://doi.org/10.20952/jrks2111913

Abstract

The objective of this current in silico study was to evaluate the influence of axial and non-axial loads on unitary implant-supported implants, with external hexagon or Morse-taper connection in two different bone level, using finite element analysis. Two implant models with the same length (13 x 3.75 mm) were analyzed according to the prosthetic connection (external hexagon or morse Taper) and bone height (bone level or 5 mm of bone loss). Both implant systems received screw-retained metallic crowns in chromium-cobalt. The peri-implant tissue was simulated as an isotropic material (polyurethane resin). The polyurethane block has been fixed and a load of 300 N was applied on the occlusal surface in two different directions (Axial or Non-axial) for each implant model and bone condition. The results were analyzed in terms of von-Mises stress and bone microstrain. The materials were considered isotropic, homogeneous, linear and elastic. The results showed that there is no difference regarding the prosthetic connection for the generated stress and strain under the same load incidence. However, bone loss and non-axial loadings increased the stress and strain magnitude regardless the prosthetic connections. In conclusion, the load incidence is more prone to modify the implant stress and bone microstrain than the prosthethic connection. In addition, the higher the bone loss the higher the stress and strain magnitude generated, regardless the loading condition.

Downloads

Download data is not yet available.

References

Albrektsson, T., Zarb, G., Worthington, P., & Eriksson, A. R. (1986). The long-term efficacy of currently used dental implants: a review and proposed criteria of success. The International journal of oral & maxillofacial implants, 1(1), 11-25.

Datte, C. E., João-Paulo-Mendes Tribst, A. M., de Oliveira Dal Piva, R. S., Nishioka, M. A. B., Evangelhista, A. D. M., & Monteiro, F. M. D. M. (2018). Influence of different restorative materials on the stress distribution in dental implants. Journal of clinical and experimental dentistry, 10(5), e439. https://doi.org/10.4317/jced.54554

Datte, C. E., Silveira, M. P. M., de Andrade, G. S., Bottino, M. A., Borges, A. L. S., Dal Piva, A. M. O., & Tribst, J. P. M. (2020). Evaluation of zirconia and cobalt-chrome for custom-milled framework design for an implant-supported full-arch fixed dental prosthesis: a finite element analysis. Dental Oral Biology and Craniofacial Research, 3(4), 1-5. https://doi.org/10.31487/j.dobcr.2020.04.02

Datte, C.E., Rodrigues, V.A., Datte, F.B., Lopes, G. R. S., Borges, A. L. S., & Nishioka, R. S. (2021). The effect of different bone level and prosthetic connection on the biomechanical response of unitary implants: strain gauge and finite element analyses. International Journal of Advanced Engineering Research and Science, 8(2), 218-224. https://doi.org/10.22161/ijaers.82.28

de Carvalho Moreira, A., Silva, J. R., de Paula Samico, R., de Melo Nishioka, G. N., & Nishioka, R. S. (2019). Application of Bio-Oss in tissue regenerative treatment prior to implant installation: literature review. Brazilian Dental Science, 22(2), 147-154. https://doi.org/10.14295/bds.2019.v22i2.1691

de Vasconcellos, L. G. O., Nishioka, R. S., de Vasconcellos, L. M. R., Balducci, I., & Kojima, A. N. (2013). Microstrain around dental implants supporting fixed partial prostheses under axial and non–axial loading conditions, In Vitro Strain Gauge Analysis. The Journal of craniofacial surgery, 24(6), e546–e551. https://doi.org/10.1097/SCS.0b013e31829ac83d

de Vasconcellos, L. G., Kojima, A. N., Nishioka, R. S., de Vasconcellos, L. M., & Balducci, I. (2015). Axial loads on implant-supported partial fixed prostheses for external and internal hex connections and machined and plastic copings: strain gauge analysis. The Journal of oral implantology, 41(2), 149–154. https://doi.org/10.1563/AAID-JOI-D-10-00174

Firmino, A. S., Tribst, J., Nakano, L., de Oliveira Dal Piva, A. M., Borges, A., & Paes-Junior, T. (2020). Silica-nylon reinforcement effect on the fracture load and stress distribution of a resin-bonded partial dental prosthesis. The International journal of periodontics & restorative dentistry, 10.11607/prd.4347. Advance online publication. https://doi.org/10.11607/prd.4347

Frost H. M. (1994). Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. The Angle orthodontist, 64(3), 175–188. https://doi.org/10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2

Kayabaşı, O., Yüzbasıoğlu, E., & Erzincanlı, F. (2006). Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software, 37(10), 649-658. https://doi.org/10.1016/j.advengsoft.2006.02.004

Lemos, C., Verri, F. R., Noritomi, P. Y., Kemmoku, D. T., Souza Batista, V. E., Cruz, R. S., de Luna Gomes, J. M., & Pellizzer, E. P. (2021). Effect of bone quality and bone loss level around internal and external connection implants: a finite element analysis study. The Journal of prosthetic dentistry, 125(1), 137.e1–137.e10. https://doi.org/10.1016/j.prosdent.2020.06.029

Linetskiy, I., Demenko, V., Linetska, L., & Yefremov, O. (2017). Impact of annual bone loss and different bone quality on dental implant success - A finite element study. Computers in biology and medicine, 91, 318–325. https://doi.org/10.1016/j.compbiomed.2017.09.016

Lopes, G. D. R. S., da Penha Freitas, V., de Matos, J. D. M., Andrade, V. C., Nishioka, R. S., & de Las Casas, E. B. (2019). Stress distribution in dental roots restored with different post and core materials. Journal of International Oral Health, 11(3), 127. https://www.jioh.org/text.asp?2019/11/3/127/261264

Mericske-Stern, R., Assal, P., Mericske, E., & Bürgin, W. (1995). Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. The International journal of oral & maxillofacial implants, 10(3), 345–353.

Miyashiro, M., Suedam, V., Moretti Neto, R. T., Ferreira, P. M., & Rubo, J. H. (2011). Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis--tension tests. Journal of applied oral science : revista FOB, 19(3), 244–248. https://doi.org/10.1590/s1678-77572011000300012

Nishioka, R. S., de Vasconcellos, L. G., & de Melo Nishioka, L. N. (2009). External hexagon and internal hexagon in straight and offset implant placement: strain gauge analysis. Implant dentistry, 18(6), 512–520. https://doi.org/10.1097/ID.0b013e3181bcc621

Nishioka, R. S., & Souza, F. A. (2009). Bone spreader technique: a preliminary 3-year study. The Journal of oral implantology, 35(6), 289–294. https://doi.org/10.1563/1548-1336-35.6.289

Nishioka, R. S., Nishioka, L. N., Abreu, C. W., de Vasconcellos, L. G., & Balducci, I. (2010). Machined and plastic copings in three-element prostheses with different types of implant-abutment joints: a strain gauge comparative analysis. Journal of applied oral science : revista FOB, 18(3), 225–230. https://doi.org/10.1590/s1678-77572010000300005

Nishioka, R. S., de Vasconcellos, L. G., & de Melo Nishioka, G. N. (2011). Comparative strain gauge analysis of external and internal hexagon, Morse taper, and influence of straight and offset implant configuration. Implant dentistry, 20(2), e24–e32. https://doi.org/10.1097/ID.0b013e318211fce8

Nishioka, R. S., de Vasconcellos, L. G., Jóias, R. P., & Rode, S. (2015). Load-application devices: a comparative strain gauge analysis. Brazilian dental journal, 26(3), 258–262. https://doi.org/10.1590/0103-6440201300321

Nishioka, R. S., Rodrigues, V. A., De Santis, L. R., Nishioka, G. N., Santos, V. M., & Souza, F. Á. (2016). Comparative Microstrain Study of Internal Hexagon and Plateau Design of Short Implants Under Vertical Loading. Implant dentistry, 25(1), 135–139. https://doi.org/10.1097/ID.0000000000000345

Ota-Tsuzuki, C., Datte, C. E., Nomura, K. A., Gouvea Cardoso, L. A., & Shibli, J. A. (2011). Influence of titanium surface treatments on formation of the blood clot extension. The Journal of oral implantology, 37(6), 641–647. https://doi.org/10.1563/AAID-JOI-D-09-00125.1

Rodrigues, V. A., Tribst, J. P. M., de Santis, L. R., de Lima, D. R., & Nishioka, R. S. (2017). Influence of angulation and vertical misfit in the evaluation of micro-deformations around implants. Brazilian Dental Science, 20(1), 32-39.a https://doi.org/10.14295/bds.2017.v20i1.1311

Rodrigues, V. A., Tribst, J. P. M., Santis, L. R. D., Nishioka, G. N. D. M., Lima, D. R. D., & Nishioka, R. S. (2017). Microscopic evaluation of implant platform adaptation with UCLA-type abutments: in vitro study. Revista de Odontologia da UNESP, 46(1), 56-60.b. https://doi.org/10.1590/1807-2577.19516

Rodrigues, V. A., Tribst, J. P. M., Santis, L. R., Borges, A. L. S., & Nishioka, R. S. (2018). Biomechanical effect of inclined implants in fixed prosthesis: strain and stress analysis. Revista de Odontologia da UNESP, 47(4), 237-243. https://doi.org/10.1590/1807-2577.05418

Santos, V. M. M., Sousa, T. D. C. S., Louzada, F. F., de Melo Nishioka, G. N., & Nishioka, R. S. (2012). Strain Gauge: study of strain distributions around three Morse taper prosthetic connections with offset positioning in machined and plastic copings under vertical load. Brazilian Dental Science, 15(3), 50-55. https://doi.org/10.14295/bds.2012.v15i3.823

Sousa, T. D. C. S., De Lelis, V., Santos, V. M. M., de Melo Nishioka, G. N., de Oliveira Vasconcellos, L. G., & Nishioka, R. S. (2013). Strain Gauge analysis of non-axial loads in three-element implant-supported prostheses. Brazilian Dental Science, 16(2), 24-30. https://doi.org/10.14295/bds.2013.v16i2.866

Schwitalla, A. D., Abou-Emara, M., Spintig, T., Lackmann, J., & Müller, W. D. (2015). Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. Journal of biomechanics, 48(1), 1–7. https://doi.org/10.1016/j.jbiomech.2014.11.017

Tercanli Alkis, H., & Turker, N. (2019). Retrospective evaluation of marginal bone loss around implants in a mandibular locator-retained denture using panoramic radiographic images and finite element analysis: a pilot study. Clinical implant dentistry and related research, 21(6), 1199–1205. https://doi.org/10.1111/cid.12857

Tribst, J., de Oliveira Dal Piva, A. M., Borges, A., Nishioka, R. S., Bottino, M. A., & Rodrigues, V. A. (2020). Effect of framework type on the biomechanical behavior of provisional crowns: strain gauge and finite element analyses. The International journal of periodontics & restorative dentistry, 40(1), e9–e18. https://doi.org/10.11607/prd.4061

Tribst, J. P. M., Dal Piva, A. M. D. O., Rodrigues, V. A., Borges, A. L. S., & Nishioka, R. S. (2017). Stress and strain distributions on short implants with two different prosthetic connections–an in vitro and in silico analysis. Brazilian Dental Science, 20(3), 101-109.a. https://doi.org/10.14295/bds.2017.v20i3.1433

Tribst, J., Dal Piva, A., Shibli, J. A., Borges, A., & Tango, R. N. (2017). Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels. Brazilian oral research, 31, e96. https://doi.org/10.1590/1807-3107bor-2017.vol31.0096

Tribst, J. P. M., Dal Piva, A. M. de O., Borges, A. L. S., & Bottino, M. A. (2018). Effect of implant number and height on the biomechanics of full arch prosthesis. Brazilian Journal of Oral Sciences, 17, e18222. https://doi.org/10.20396/bjos.v17i0.8653837

Tribst, J. P., Rodrigues, V. A., Dal Piva, A. O., Borges, A. L., & Nishioka, R. S. (2018). The importance of correct implants positioning and masticatory load direction on a fixed prosthesis. Journal of clinical and experimental dentistry, 10(1), e81–e87. https://doi.org/10.4317/jced.54489

Tribst, J., Rodrigues, V. A., Borges, A., Lima, D. R., & Nishioka, R. S. (2018). Validation of a Simplified Implant-Retained Cantilever Fixed Prosthesis. Implant dentistry, 27(1), 49–55. https://doi.org/10.1097/ID.0000000000000699

Tribst, J. P. M., Dal Piva, A. M. O., Anami, L. C., Borges, A. L. S., & Bottino, M. A. (2019). Influence of implant connection on the stress distribution in restorations performed with hybrid abutments. Journal of Osseointegration, 11(3), 507-512.a. https://doi.org/10.23805/JO.2019.11.03.08

Tribst, J. P. M., Dal Piva, A. M. D. O., Riquieri, H., Nishioka, R. S., Bottino, M. A., & Rodrigues, V. A. (2019). Monolithic zirconia crown does not increase the peri-implant strain under axial load. Journal of International Oral Health, 11(1), 50.b. https://doi.org/10.4103/jioh.jioh_307_18

Vasconcellos, L. G., Nishioka, R. S., Vasconcellos, L. M., & Nishioka, L. N. (2011). Effect of axial loads on implant-supported partial fixed prostheses by strain gauge analysis. Journal of applied oral science : revista FOB, 19(6), 610–615. https://doi.org/10.1590/s1678-77572011000600011

Wandscher, V. F., Bergoli, C. D., de Oliveira, A. F., Kaizer, O. B., Souto Borges, A. L., Limberguer, I., & Valandro, L. F. (2015). Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters. Journal of the mechanical behavior of biomedical materials, 43, 69–77. https://doi.org/10.1016/j.jmbbm.2014.11.016

Downloads

Published

2021-02-27

Issue

Section

Health Sciences