Adsorption kinetics of Remazol Brilliant Blue R dye from liquid effluents by bovine bone charcoal

Authors

  • Lívia Katia dos Santos Lima Centro Universitário da Fundação Educacional Guaxupé, Guaxupé, Minas Gerais
  • Antônio Vilas Boas Quintiliano Júnior Centro Universitário da Fundação Educacional Guaxupé, Guaxupé, Minas Gerais
  • André Henrique Zeferino Universidade São Francisco, Campinas, São Paulo
  • Ana Paula Duarte Centro Universitário da Fundação Educacional Guaxupé, Guaxupé, Minas Gerais

DOI:

https://doi.org/10.20952/jrks1111717

Abstract

The textile industry stands out for generating effluents with high levels of dyes, which have a high polluting potential. Among these dyes, the Remazol Brilliant Blue R azo dye, is one of the most used for dyeing wool and cotton, being released in excess on these effluents. Intended for the carcinogenic and mutagenic potential of this type of dyes, several researches are developed in search of economical technologies for their removal. An adsorption is a viable technique, since several materials can be used for this purpose. Bovine bone activated carbon, as it is a residue from the livestock industry that is easily obtained, has been studied as an adsorbent material in the removal of dyes. Therefore, the objective of this project was to evaluate the performance of the adsorption kinetics of the Remazol Brilliant Blue R dye from the effluents using bovine bone activated carbon. The experiments were carried out in batches, with solutions concentrations of 20, 50 and 100 ppm, and the mathematical models of pseudo-first order, pseudo-second order and intraparticle diffusion were adjusted to the experimental data. For concentrations of 20 and 50 ppm, the model that best fits was the pseudo-first order, while for the concentration of 100 ppm the pseudo-second order model obtained the best result with R2 of 0.992. The intraparticle diffusion model showed that the higher the concentration of the dye in solution, the greater the thickness of the boundary layer and that the intraparticle diffusion does not control the adsorption process in any of the study criteria.

Downloads

Download data is not yet available.

References

Aksu, Z., & Tezer, S. (2005). Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40, 1347-1361. https://doi.org/10.1016/j.procbio.2004.06.007

Dallago, R. M., Smaniotto, A., & Oliveira, L. C. A. (2005). Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Química Nova, 3(28), 433-437.

https://doi.org/10.1590/S0100-40422005000300013

Desa, A. L., Hairom, N. H. H., Ng, L. Y., Ng, C. Y., Ahmad, M. K., & Mohammad, A. W. (2019). Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. Journal of Water Process Engineering, 31, e100872. https://doi.org/10.1016/j.jwpe.2019.100872

Fideles, R. A. (2017). Adsorção dos corantes Auramina-O e Safranina-T em bagaço de cana carboxilado: estudos em sistemas mono e bicomponente em batelada. Ouro Preto. Dissertação. Ouro Preto, MG: UFOP.

Gupta, V. K., & Suhas, M. D. (2009). Application of low-cost adsorbents for dye removal – a review. Journal of Environmental Management, 90(8), 2313-2342.

https://doi.org/10.1016/j.jenvman.2008.11.017

Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5

Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study. Dyes and Pigments, 51(1), 25-40. https://doi.org/10.1016/S0143-7208(01)00056-0

Kimura, I. Y., Gonçalves Jr., A. C., Stolberg, J., Laranjeira M. C. M., & Fávere, V. T. (1999). Efeito do pH e do tempo de contato na adsorção de corantes reativos por microesferas de quitosana. Polímeros, 9(3), 51-57. https://doi.org/10.1590/S0104-14281999000300010

Kunz, A., Peralta-Zamora, P., Moraes, S. G., & Durán, N. (2002). Novas tendências no tratamento de efluentes têxteis. Química Nova, 25(1), 78-82. https://doi.org/10.1590/S0100-40422002000100014

Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1-39.

Lima, L. K. S. (2015) Bioadsorção de íons metálicos em sistemas simples e competitivos preparados a partir de diferentes macrófitas. Campinas. Tese. Campinas, SP: UNICAMP.

Lima, L. K. S., Kleinubing, S. J., Silva, E. A., & Silva, M. G. C. (2011). Removal of chromium from wastewater using macrophytes lemna minor as biosorben. Chemical Engineering Transactions, 25, 303-308. https://doi.org/10.3303/CET1125051

Malik, P. K. (2003). Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes and Pigments, 56(3), 39-249. https://doi.org/10.1016/S0143-7208(02)00159-6

Mesquita, P. L. (2016). Uso de carvão ativo de ossos bovinos na remoção de contaminantes orgânicos de eletrodiálise e sua contribuição ao reuso de água na indústria de petróleo. Belo Horizonte. Tese. Belo Horizonte, MG: UFMG.

Sharma, Y. C., & Upadhyay, S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels, 23(6), 2983-2988. https://doi.org/10.1021/ef9001132

Pereira, I. C., Carvalho, K. Q., Passig, F. H., Ferreira, R. C., Rizzodomingues, R. C. P., Hoppen, M. I., Macioski, G., Nagalli, A., & Perreto, F. (2018). Thermal and thermal-acid treated sewage sludge for the removal of dye reactive Red 120: characteristics, kinetics, isotherms, thermodynamics and response surface methodology design. Journal of Environmental Chemical Engineering, 6(6), 7233-7246. https://doi.org/10.1016/j.jece.2018.10.060

Silva, T. L., Ronix, A., Pezoti, O., Souza, L. S., Leandro, P. K. T., Bedin, K. C., Beltrame, K. K., Cazetta, A. L., & Almeida, V. C. (2016). Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye Remazol Brilliant Blue R. Chemical Engineering Journal, 303(1), 467-476. https://doi.org/10.1016/j.cej.2016.06.009

Sotiles, A. R. (2017). Estudo de diferentes tratamentos da caulinita para possível aplicação como adsorvente do corante têxtil C, I, Reactive Blue 203. Pato Branco. Dissertação. Pato Branco, PR; UTFPR.

Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7), 1535-1544.

https://doi.org/10.1016/S0043-1354(02)00520-1

Trevizani, J. L. B., Nagalli, A., Passig, F. H., Carvalho, K. Q., Schiavon, G. J., & Model, A. N. L. (2018). Influence of pH and concentration on the decolorization and degradation of BR red azo dye by ozonization. Acta Scientiarum-Technology, 40, e35436. https://doi.org/10.4025/actascitechnol.v40i1.35436

Vasques, A. R., Souza, S. M. A., Guelli, U. W., Souza, L., Valle, A. A. U., & Borges, J. A. M. (2011). Adsorção dos corantes RO16, RR2 e RR141 utilizando lodo residual da indústria têxtil. Engenharia Sanitária e Ambiental, 16(3), 245-252. http://dx.doi.org/10.1590/S1413-41522011000300007

Zanoni, M, V, B., & Carneiro, P. A. (2001). O descarte dos corantes têxteis. Revista Ciência Hoje, 29(174), 61-64.

Published

2020-12-30

Issue

Section

Engineerings, Exact and Earth Sciences