Impact of different restorative techniques on the stress distribution of endodontically-treated maxillary first premolars: a 2-dimensional finite element analysis

Authors

  • Felipe de Souza Matos Federal University of Uberlândia, Uberlândia, Minas Gerais
  • Thaís Christina Cunha Federal University of Uberlândia, Uberlândia, Minas Gerais
  • Ayla Macyelle de Oliveira Correia São Paulo State University, São José dos Campos, São Paulo
  • João Paulo Mendes Tribst São Paulo State University, São José dos Campos, São Paulo
  • Taciana Marco Ferraz Caneppele São Paulo State University, São José dos Campos, São Paulo
  • Alexandre Luiz Souto Borges São Paulo State University, São José dos Campos, São Paulo

DOI:

https://doi.org/10.20952/jrks1111761

Abstract

The aim of this study was to investigate, through finite element analysis, the impact of different restorative techniques on stress distribution in endodontically-treated maxillary first premolars. A human maxillary first premolar was modeled following the real anatomical dimensions, through a periapical radiography, using the Rhinoceros software, version 4.0SR8. The model was then replicated to compose the groups according to the coronary restorative technique: C (coltosol), GI.C (glass ionomer + coltosol), GI (glass ionomer), CR.GI (conventional resin + glass ionomer), and BR.GI (Bulk Fill resin + glass ionomer). After the models were finished, they were imported as IGES files into ANSYS software, version 17.2. Fixation was defined at the base of the cortical bone and the load was applied with 300 N axially to the buccal and palatal cusps. The results generated were in maximum principal stress (MPS), with the CR.GI and BR.GI groups presenting the lowest values of tension concentration and more homogeneous stress distribution, followed by GI, GI.C and C. All restorative techniques affected the stress distribution in endodontically-treated maxillary first premolars, promoting greater tension in the occlusal third, at the interface with the buccal wall, and in the cervical third. Conventional or Bulk Fill resins associated with a glass ionomer base have a superior biomechanical behavior in relation to coltosol or glass ionomer.

Downloads

Download data is not yet available.

References

Aggarwal, V., Singla, M., Yadav, S., & Yadav, H. (2014). Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies. Journal of Dentistry, 42(5), 619–625. https://doi.org/10.1016/j.jdent.2014.02.016

Arat Bilhan, S., Baykasoglu, C., Bilhan, H., Kutay, O., & Mugan, A. (2015). Effect of attachment types and number of implants supporting mandibular overdentures on stress distribution: a computed tomography-based 3D finite element analysis. Journal of Biomechanics, 48(1), 130–137. https://doi.org/10.1016/j.jbiomech.2014.10.022

Ausiello, P. P., Ciaramella, S., Lanzotti, A., Ventre, M., Borges, A. L., Tribst, J. P., Dal Piva, A., & Garcia-Godoy, F. (2019). Mechanical behavior of Class I cavities restored by different material combinations under loading and polymerization shrinkage stress. A 3D-FEA study. American Journal of Dentistry, 32(2), 55–60.

Ausiello, P., Ciaramella, S., Martorelli, M., Lanzotti, A., Gloria, A., & Watts, D. C. (2017). CAD-FE modeling and analysis of class II restorations incorporating resin-composite, glass ionomer and glass ceramic materials. Dental Materials : Official Publication of the Academy of Dental Materials, 33(12), 1456–1465. https://doi.org/10.1016/j.dental.2017.10.010

Bindl, A., Richter, B., & Mörmann, W. H. (2005). Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. The International Journal of Prosthodontics, 18(3), 219–224.

Brito, C. R., Velasco, L. G., Bonini, G. A., Imparato, J. C., & Raggio, D. P. (2010). Glass ionomer cement hardness after different materials for surface protection. Journal of Biomedical Materials Research. Part A, 93(1), 243–246. https://doi.org/10.1002/jbm.a.32524

Campodonico, C. E., Tantbirojn, D., Olin, O. S., & Versluis, A. (2011). Cuspal deflection and depth of cure in resin-based composite restorations filled by using bulk, incremental and transtooth-illumination techniques. Journal of the American Dental Association, 142(10), 1176–1182. https://doi.org/10.14219/jada.archive.2011.0087

Chen, S. C., Chueh, L. H., Hsiao, C. K., Wu, H. P., & Chiang, C. P. (2008). First untoward events and reasons for tooth extraction after nonsurgical endodontic treatment in Taiwan. Journal of Endodontics, 34(6), 671–674. https://doi.org/10.1016/j.joen.2008.03.016

Correia, A., Tribst, J., Matos, F. S., Platt, J. A., Caneppele, T., & Borges, A. (2018). Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions. Journal of Dentistry, 76, 68–74. https://doi.org/10.1016/j.jdent.2018.06.010

Costa, A., Xavier, T., Noritomi, P., Saavedra, G., & Borges, A. (2014). The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Operative Dentistry, Advance online publication. https://doi.org/10.2341/13-092

Dal Piva, A., Tribst, J., Souza, R., & Borges, A. (2017). Influence of alveolar bone loss and cement layer thickness on the biomechanical behavior of endodontically treated maxillary incisors: a 3-dimensional finite element analysis. Journal of Endodontics, 43(5), 791–795. https://doi.org/10.1016/j.joen.2016.11.020

Ferraz, E. G., Carvalho, C. M., Cangussu, M. C. T., Albergaria, S., Pinheiro, A. L. B., & Marques, A. M. C. (2009). Selamento de cimentos provisórios em endodontia. Revista Gaúcha de Odontologia, 57(3), 323–327.

Gulabivala, K. (2004). Restoration of the root-treated tooth. In: Stock, C., Walker, R., & Gulabivala, K. (Orgs.). Endodontics (3rd ed.). Oxford: Elsevier Mosby.

Heikkinen, T. T., Matinlinna, J. P., Vallittu, P. K., & Lassila, L. V. (2013). Long term water storage deteriorates bonding of composite resin to alumina and zirconia short communication. The Open Dentistry Journal, 7, 123–125. https://doi.org/10.2174/1874210601307010123

Jiang, Q., Huang, Y., Tu, X., Li, Z., He, Y., & Yang, X. (2018). Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis. Journal of Endodontics, 44(8), 1283–1288. https://doi.org/10.1016/j.joen.2018.04.004

Jones, G., & Taylor, G. (2018). Glass ionomer or composite resin for primary molars. Evidence-Based Dentistry, 19(3), 86–87. https://doi.org/10.1038/sj.ebd.6401328

Koseoglu, M., & Furuncuoglu, F. (2020). Efect of polyetheretherketone and indirect composite resin thickness on stress distribution in maxillary premolar teeth restored with endocrown: a 3D finite element analysis. Journal of Biotechnology and Strategic Health Research, 4(3), 298–305. https://doi.org/10.34084/bshr.825726

Krejci, I., & Stavridakis, M. (2000). New perspectives on dentin adhesion--differing methods of bonding. Practical Periodontics and Aesthetic Dentistry : PPAD, 12(8), 727–734.

Laustsen, M. H., Munksgaard, E. C., Reit, C., & Bjørndal, L. (2005). A temporary filling material may cause cusp deflection, infractions and fractures in endodontically treated teeth. International Endodontic Journal, 38(9), 653–657. https://doi.org/10.1111/j.1365-2591.2005.01003.x

Magne P. (2010). Virtual prototyping of adhesively restored, endodontically treated molars. The Journal of Prosthetic Dentistry, 103(6), 343–351. https://doi.org/10.1016/S0022-3913(10)60074-1

Magne, P., Perakis, N., Belser, U. C., & Krejci, I. (2002). Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design. The Journal of Prosthetic Dentistry, 87(5), 516–527. https://doi.org/10.1067/mpr.2002.124367

Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R., & Fleming, G. J. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. Journal of Dentistry, 40(6), 500–505. https://doi.org/10.1016/j.jdent.2012.02.015

Ng, Y. L., Mann, V., & Gulabivala, K. (2011). A prospective study of the factors affecting outcomes of non-surgical root canal treatment: part 2: tooth survival. International Endodontic Journal, 44(7), 610–625. https://doi.org/10.1111/j.1365-2591.2011.01873.x

Nobre, K. M. F., Silva, F. N., & Pereyra, B. B. S. (2020). Treatment of patients with acute respiratory insufficiency due to COVID-19: Invasive and non-invasive mechanical conditions. Journal of Research and Knowledge Spreading, 1(1), e11672. http://dx.doi.org/10.20952/jrks1111672

Nothdurft, F. P., Seidel, E., Gebhart, F., Naumann, M., Motter, P. J., & Pospiech, P. R. (2008). Influence of endodontic posts on the fracture behavior of crowned premolars with Class II cavities. Journal of Dentistry, 36(4), 287–293. https://doi.org/10.1016/j.jdent.2008.01.007

Ogura, Y., & Katsuumi, I. (2008). Setting properties and sealing ability of hydraulic temporary sealing materials. Dental Materials Journal, 27(5), 730–735. https://doi.org/10.4012/dmj.27.730

Rees, J. S., Jacobsen, P. H., & Hickman, J. (1994). The elastic modulus of dentine determined by static and dynamic methods. Clinical Materials, 17(1), 11–15. https://doi.org/10.1016/0267-6605(94)90042-6

Salazar-Silva, J. R., Pereira, R. C. S., & Ramalho, L. M. P. (2004). Importância do selamento provisório no sucesso do tratamento endodôntico. Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 4(2), 143–149.

Santos, S. S., Delbem, A., Moraes, J., Souza, J., Oliveira, L., & Pedrini, D. (2019). Resin-modified glass ionomer containing calcium glycerophosphate: physico-mechanical properties and enamel demineralization. Journal of Applied Oral Science, 27, e20180188. https://doi.org/10.1590/1678-7757-2018-0188

Schaefer, O., Watts, D. C., Sigusch, B. W., Kuepper, H., & Guentsch, A. (2012). Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dental Materials : Official Publication of the Academy of Dental Materials, 28(3), 320–326. https://doi.org/10.1016/j.dental.2011.12.008

Sendhilnathan, D., & Nayar, S. (2008). The effect of post-core and ferrule on the fracture resistance of endodontically treated maxillary central incisors. Indian Journal of Dental Research : Official Publication of Indian Society for Dental Research, 19(1), 17–21. https://doi.org/10.4103/0970-9290.38926

Singh, S. V., Bhat, M., Gupta, S., Sharma, D., Satija, H., & Sharma, S. (2015). Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: a three-dimensional finite element analysis. European Journal of Dentistry, 9(3), 428–432. https://doi.org/10.4103/1305-7456.163228

Soares, C. J., Martins, L. R., Fonseca, R. B., Correr-Sobrinho, L., & Fernandes Neto, A. J. (2006). Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. The Journal of Prosthetic Dentistry, 95(6), 421–429. https://doi.org/10.1016/j.prosdent.2006.03.022

Soares, C. J., Raposo, L. H., Soares, P. V., Santos-Filho, P. C., Menezes, M. S., Soares, P. B., & Magalhães, D. (2010). Effect of different cements on the biomechanical behavior of teeth restored with cast dowel-and-cores-in vitro and FEA analysis. Journal of Prosthodontics : Official Journal of the American College of Prosthodontists, 19(2), 130–137. https://doi.org/10.1111/j.1532-849X.2009.00527.x

Touré, B., Faye, B., Kane, A. W., Lo, C. M., Niang, B., & Boucher, Y. (2011). Analysis of reasons for extraction of endodontically treated teeth: a prospective study. Journal of Endodontics, 37(11), 1512–1515. https://doi.org/10.1016/j.joen.2011.07.002

Tribst, J. P., Kohn, B. M., de Oliveira Dal Piva, A. M., Spinola, M. S., Borges, A. L., & Andreatta Filho, O. D. (2019). Influence of restoration thickness on the stress distribution of ultrathin ceramic onlay rehabilitating canine guidance: a 3D-finite element analysis. Minerva Stomatologica, 68(3), 126–131. https://doi.org/10.23736/S0026-4970.19.04183-9

Tzimpoulas, N. E., Alisafis, M. G., Tzanetakis, G. N., & Kontakiotis, E. G. (2012). A prospective study of the extraction and retention incidence of endodontically treated teeth with uncertain prognosis after endodontic referral. Journal of Endodontics, 38(10), 1326–1329. https://doi.org/10.1016/j.joen.2012.06.032

Versluis, A., Tantbirojn, D., Pintado, M. R., DeLong, R., & Douglas, W. H. (2004). Residual shrinkage stress distributions in molars after composite restoration. Dental materials : Official Publication of the Academy of Dental Materials, 20(6), 554–564. https://doi.org/10.1016/j.dental.2003.05.007

Vire D. E. (1991). Failure of endodontically treated teeth: classification and evaluation. Journal of Endodontics, 17(7), 338–342. https://doi.org/10.1016/S0099-2399(06)81702-4

Xie, D., Brantley, W. A., Culbertson, B. M., & Wang, G. (2000). Mechanical properties and microstructures of glass-ionomer cements. Dental Materials : Official Publication of the Academy of Dental Materials, 16(2), 129–138. https://doi.org/10.1016/s0109-5641(99)00093-7

Yoshikawa, T., Burrow, M. F., & Tagami, J. (2001). A light curing method for improving marginal sealing and cavity wall adaptation of resin composite restorations. Dental Materials : Official Publication of the Academy of Dental Materials, 17(4), 359–366. https://doi.org/10.1016/s0109-5641(00)00095-6

Yuan, K., Niu, C., Xie, Q., Jiang, W., Gao, L., Huang, Z., & Ma, R. (2016). Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis. European Journal of Oral Sciences, 124(6), 591–596. https://doi.org/10.1111/eos.12303

Zaia, A. A., Nakagawa, R., De Quadros, I., Gomes, B. P., Ferraz, C. C., Teixeira, F. B., & Souza-Filho, F. J. (2002). An in vitro evaluation of four materials as barriers to coronal microleakage in root-filled teeth. International Endodontic Journal, 35(9), 729–734. https://doi.org/10.1046/j.1365-2591.2002.00529.x

Downloads

Published

2020-12-30

Issue

Section

Health Sciences