REVOLUTION IN SEED ANALYSIS: THE ROLE OF ARTIFICIAL INTELLIGENCE

Authors

  • THIAGO COSTA FERREIRA UEPB

DOI:

https://doi.org/10.28998/rca.22.18559

Keywords:

Avalueted, Technology, Sanity

Abstract

Seed production in Brazil is regulated by legislation and technologies to achieve high-quality standards, including quality assessment tests conducted traditionally in laboratories. However, using artificial intelligence technologies for laboratory activities is increasingly imminent, optimizing and standardizing processes. In this context, this article aims to describe this new methodological approach. It is essential to understand that there is a need for non-destructive seed assessment methods that require low-cost components and minimal labor, which are crucial for the future of seed analysis. Furthermore, the proposal for modernization through the use of Artificial Intelligence and Image Processing reflects the need for significant advancement in agricultural production. Therefore, the future of seed production in Brazil is closely tied to adopting such innovative technologies, as these not only meet regulatory demands but also enhance the quality standards of seeds, thereby contributing to a more robust and sustainable agricultural system.

Downloads

Download data is not yet available.

References

Agarwal, R. L. Seed Technology. Oxford and IBH Publishing, 2018.

Alves, R. M. et al. Stored diaspores of Astronium urundeuva Fr. (M. Alemão) Engl. (Anacardiaceae) submitted to hydropriming. Journal of Seed Science, 2020, 42, e202042026. DOI: 10.1590/2317-1545v42n2a26.

Andrade, T. C. S. et al. Is the physiological potential of oilseed rape influenced by fertilization with nitrogen and sulfur? Journal of Seed Science, 2020, 42, e202042027. DOI: 10.1590/2317-1545v42n2a27.

BRASIL. Instrução para a Análise de Sementes de Espécies Florestais. Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, 2013.

BRASIL. Manual de Análise de Sementes. Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, 2009.

Benech-Arnold, R.; Sánchez, R. A.; Binswanger, M.; Saubidet, M. I. Handbook of Seed Physiology: Applications to Agriculture. CRC Press, 2004.

Carvalho, E. R.; Villela, F. A.; Toledo, M. Z. Phytotoxicity in soybean seeds treated with phytosanitary products at different application times. Journal of Seed Science, 2020, 42, e202042036. DOI: 10.1590/2317-1545v42n2a36.

Carvalho, L. B. de. Plantas Daninhas. Lages, SC: [s.n.], 2013. Disponível em: https://www.fcav.unesp.br/Home/departamentos/fitossanidade/leonardobiancodecarvalho/livro_plantasdaninhas.pdf.

Carvalho, N. M.; Nakagawa, J. Sementes: Ciência, Tecnologia e Produção. 5. ed. Jaboticabal: FUNEP, 2012.

Castan, D. O. C. et al. Vigor-S, a new system for evaluating the physiological potential of maize seeds. Scientia Agricola, 2018, 75, 2, 167–172. DOI: 10.1590/1678-4499.20180003. CORREA, A. R. et al. Germination and seed ecology of Buchenavia tomentosa Eichler (Combretaceae). Journal of Seed Science, 2020, 42. DOI: 10.1590/2317-1545v42n3a06.

Cheruku, R.; Prakash, K. SeedAI: A novel seed germination prediction system using dual stage deep learning framework. Environmental Research Communications, 2023. DOI: 10.1088/2515-7620/ad16f1.

Elbeheiry, N.; Balog, R. Technologies driving the shift to smart farming: A review. IEEE Sensors Journal, 2023, 23, 1752–1769. DOI: 10.1109/JSEN.2022.3225183.

Ferreira, A. G.; Borghetti, F. Germinação do Básico ao Aplicado. Porto Alegre: Artmed, 2004.

Filho, J. M. Seed vigor testing: An overview of the past, present, and future perspectives. Scientia Agricola, 2015, 72, 4, 363–374. DOI: 10.1590/0103-9016-2015-0007.

Hajar, A.; Balog, R.; Ahmed, K. Turning smartphone camera into a fungal infection detector for chickpea seed germination. In: Proceedings of the 2023 International Conference on Multimedia Computing, Networking and Applications (MCNA). IEEE, 2023, 27–32. DOI: 10.1109/MCNA59361.2023.10185850.

Hesami, M. et al. Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). Industrial Crops and Products, 2021, 170. DOI: 10.1016/j.indcrop.2021.113753.

Jiang, G.-L. Comparison and application of non-destructive NIR evaluations of seed protein and oil content in soybean breeding. Agronomy, 2020, 10, 1. DOI: 10.3390/agronomy10010077.

Melo, P. et al. Evaluating seed quality using image processing and machine learning techniques. Sensors, 2019, 19, 4, 846. DOI: 10.3390/s19040846.

Peng, Q.; Wang, X.; Lin, S. Automatic monitoring system for seed germination test based on deep learning. Journal of Electrical and Computer Engineering, 2022. DOI: 10.1155/2022/4678316.

Rudnev, S. G. Principles of organization of post-harvest grain processing. In: Proceedings of the International Scientific and Practical Conference on World Science, 2017.

Saffariha, M.; Jahani, A.; Potter, D. Seed germination prediction of Salvia limbata under ecological stresses in protected areas: An artificial intelligence modeling approach. BMC Ecology, 2020, 20. DOI: 10.1186/s12898-020-00316-4.

Shadryn, D.; Wang, Y.; Chen, J. Assessment of leaf area and biomass through AI-enabled deployment. Engineering, 2023, 4. DOI: 10.3390/eng4030116.

Shorten, C.; Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. Journal of Big Data, 2019, 6, 1. DOI: 10.1186/s40537-019-0197-0.

TUJO, T. et al. A predictive model to predict seed classes using machine learning. International Journal of Engineering Research and Technology, v. 6, p. 334–344, 2019.

Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 2020, 177, 105709. DOI: 10.1016/j.compag.2020.105709.

Wijewardana, C. et al. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry, 2019, 278, 92–100. DOI: 10.1016/j.foodchem.2018.12.025.

Wang, H.; Zhang, X.; Chen, S. An attack detection method for self-powered sensor IoTs based on ensemble learning. IEEE Sensors Journal, 2023, 23, 20663–20671. DOI: 10.1109/JSEN.2022.3215556.

Zhang, Y.; Liu, H.; Sun, Q.; Zhu, J. An automated method for the assessment of the rice grain germination rate. PLoS ONE, 2023, 18. DOI: 10.1371/journal.pone.0279934.

Published

2024-12-28