IN VITRO GERMINATION OF BLACK PITANGA, Eugenia sulcata SPRENG. EX MART. FOR THE PRODUCTION OF SEEDLINGS AIMED AT THE RECOMPOSITION OF ATLANTIC FOREST AREAS

Autores/as

  • Laureen Michelle Houllou Centro de Tecnologias Estratégicas do Nordeste
  • Erik Castilho Bussmeyer Centro de Tecnologias Estratégicas do Nordeste
  • Marta Ribeiro Barbosa Centro de Tecnologias Estratégicas do Nordeste
  • Robson Antônio de Souza Centro de Tecnologias Estratégicas do Nordeste
  • Lindomar Maria de Souza Centro de Tecnologias Estratégicas do Nordeste
  • Carolina Barbosa Malafaia Centro de Tecnologias Estratégicas do Nordeste

DOI:

https://doi.org/10.28998/rca.v19i3.10301

Palabras clave:

biome conservation, Myrtaceae, biodiversity, seed germination maximization

Resumen

An important tool for the conservation of biomes is the application of technology to support biodiversity maintenance and recovery. Thus, plant tissue culture could be used as strategic tool to support the production of woody species for reforestation purposes. The use of fruit trees is particularly important because they attract seed dispersing animals that could help environment recovery.  Although black pitanga (Eugenia sulcata Spreng ex Mart.) is difficult to find in natural habitat, it presents potential relevance for initiatives aimed at the reforestation of the Atlantic Forest because it is highly appreciated by wild birds. However, the low seed production and germination rate in natural environments impairs the maintenance of the genetic diversity. In this way, in vitro cultivation is an alternative to produce seedlings of arboreal species. The objective of the present work was to evaluate the potential use of in vitro culture for the germination of black pitanga seeds from the field to produce viable seedlings used in initiatives to recover Atlantic Forest areas. Seeds of two E. sulcata donor plants were cultured in vitro in the Wood Plant Medium (WPM) and Murashige Skoog medium (MS) with and without activated charcoal. During in vitro cultivation, development parameters (germination, leaf emission, root emission) and contamination were evaluated. Plants obtained were successfully acclimatized. The results demonstrated that the in vitro cultivation of E. sulcata seeds is a viable alternative to produce seedlings for reintroduction under in vivo conditions. However, the genetic background of donor plants could interfere in seed germination and plant development. These results are a probable reflect of the natural genetic diversity present in seeds.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmadi, E.; Nasr, S. M. H.; Jalilvand, H.; Savadkoohi, S. K. Contamination control of microbe Ziziphus spina [christti] seed in vitro culture. Trees, 2012, 26, 1299–1304.

Araujo, M. D. C. D. R.; Chagas, E. A.; Garcia, M. I. R.; Pinto, S. T. S.; Chagas, P. C.; Vendrame, W.; Mota-Filho, A. B.; Souza, O. M. Micropropagation of caçari under different nutritive culture media, antioxidants, and levels of agar and pH. African Journal of Biotechnology, 2016, 15, 1771–1780.

Basto, S.; Serrano, C.; Jaramillo, E. H. Effects of donor plant age and explants on in vitro culture of Cedrela montana Moritz ex Turcz. Universitas Scientiarum, 2012, 17, 263–271.

Bell, R. L.; Scorza, R.; Lomberk, D. Adventitious shoot regeneration of pear (Pyrus spp.) genotypes. Plant Cell Tissue Organ Cult, 2012, 108, 229–236.

Çördük, N.; Aki, C. Inhibition of browning problem during micropropagation of Sideritis trojana bornm., an endemic medicinal herb of Turkey. Romanian Biotechnological Letters, 2011, 16, 6760–6765.

Daniel, O.; Arruda, L. Fitossociologia de um fragmento de Floresta Estacional Semidecidual Aluvial às margens do Rio Dourados, MS. Scientia FLorestalis, 2005, 68, 69–86.

Fagundes, C. M.; Moreira, R. M.; Ramm, A.; Schuch, M. W.; Tomaz, Z. F. P. Activated charcoal in the in vitro establishment of raspberry cultivars. Revista de Ciências Agroveterinárias, 2018, 16, 406–413.

Felitto, G.; Lozano, E. D.; Canestraro, B. K.; Kersten, R. A. Riqueza, composição e estrutura da comunidade arbustivo-regenerante em diferentes estágios sucessionais de uma Floresta Subtropical do Brasil. Hoehnea, 2018, 44, 490–504.

Ferreira, A. F. A.; Monteiro, L. N. H.; Rodrigues, M. G. F.; Oliveira, N. B.; Bolian, A. C. In vitro cultivation of Tamarindus indica L.: explants obtention and contamination in culture medium. Comunicata Scientiae, 2018, 9, 298–302.

Ferreira, E.A.; Pasqual, M. Protocol otimization for micropropagation of ‘Roxo de Valinhos’ fig tree. Ciência Rural, 2008, 38, 1149–1153.

Houllou, L. M.; Souza, R. A.; Santos, E. C. P.; Silva, J. J. P.; Barbosa, M. R.; Sauvé, J. P. G.; Harand, W. Clonal propagation of neem (Azadirachta indica A. Juss.) via direct and indirect in vitro regeneration. Revista Árvore, 2015, 39, 439–445.

Jalonen, R; Valette, M; Boshier, D; Duminil, J; Thomas, E. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conservation Letters, 2018, 11,1-9. https://doi.org/10.1111/conl.12424.

Lencina, K. H.; Bisognin, D. A.; Pimentel, N.; Kielse, P.; Mello, U. S. In vitro productivity of Apuleia (Apuleia leiocarpa) microstumps kelen. Ciência Florestal, 2018, 28, 150–159.

Lloyd, G.; McCown, B.H. Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture. Combined Proceedings-International Plant Propagator’s Society, 1980, 30, 421-427.

Mantovani, N. C.; Franco, E. T. H.; Vestena, S. In vitro Regeneration of louro-pardo (Cordia trichotoma (Vellozo) Arrabida ex Steudel). Ciência Florestal, 2001, 11, 93–101.

Murashige, T.; Skoog, F. A revised medium for rapid groth an bioassays with Tobacco tissue cultures. Physiolgia Plantarum, 1962, 15, 473–497.

Neri, A. V.; Soares, M. P.; Neto, J. A. A. M.; Dias, L. E. Cerrado species with potential for recovery of degraded areas for gold mining, Paracatu-MG. Revista Arvore, 2011, 35, 907–918.

Prata, E. M. B.; Pinto, S. A. F.; Assis, M. A. Fitossociologia e distribuição de espécies arbóreas em uma floresta ribeirinha secundária no município de Rio Claro, SP, Brasil. Brazilian Journal of Botany, 2011, 34, 159–168.

Preece, J. E.; Compton, M. E. Problems with Explant Exudation in Micropropagation. High-Tech and Micropropagation, 1991, 17, 168–189.

Ramage, C. M.; Williams, R. R. Mineral Nutrition and Plant Morphogenesis. In Vitro Cellular & Developmental Biology, 2002, 38, 116–124.

Silva, C. V.; Bilia, D. A. C.; Barbedo, C. J. Germination of Eugenia species seeds after cutting. Revista Brasileira de Sementes, 2005, 27, 86–92.

Simões, K. D. S.; Lino, L. S. M.; Souza, A. D. S.; Silva, S. O.; Ledo, C. A. S. Enraizamento de inhame em meios MS e carvão ativado. Científica, 2014, 42, 164–169.

Sousa, P. B. L.; Santana, J. R. F.; Crepaldi, I. C.; Lima, A. R. Germination in vitro of seeds of a threatened Arboreal Species in the Municipal district of Abaira (BA). Sitientibus, 1999, 20, 89–99.

Souza, R. A.; Dantas, P. V. P.; Cavalcante, P. F.; Tenório, R. R.; Houllou, L. M. Basic procedure for the in vitro propagation of Brazilian trees for reforestation purposes. Journal Environmental Analysis and Progress, 2017, 02, 107–114.

Stachevski, T. W.; Franciscon, L.; Degenhardt-Goldbach, J. Efeito do meio de cultura na calogênese in vitro a partir de folhas de erva-mate. Pesquisa Florestal Brasileira, 2013, 33, 339–342.

Toledo, J. A.; Biasi, L. A. Multiplicação e enraizamento in vitro da amoreira preta cv. xavante. Revista de Ciências Agronômicas, 2018, 27, 328–339.

Urzedo , D.I. de; Piña-Rodrigues, F.C.M.; Feltran-Barbieri, R.; Junqueira, R.G.P.; Fisher, R. Seed Networks for Upscaling Forest Landscape Restoration: Is It Possible to Expand Native Plant Sources in Brazil?. Forests, 2020, 11, 259, 1-20. doi:10.3390/f11030259.

Utami, E. S. W.; Hariyanto, S. In Vitro Seed Germination and Seedling Development of a Rare Indonesian Native Orchid Phalaenopsis amboinensis J.J.Sm. Scientifica (Cairo), 2019, 2019, 1–6.

Vicente, M. A. A.; Almeida, W. A. B.; Carvalho, Z. S. In vitro multiplication and acclimation of Vernonia condensata Baker. Brazilian Journal of Medicinal Plants, 2009, 11, 176–183.

Wadl, P. A.; Dattilo, A. J.; Vito, L. M.; Trigiano, R. N. Shoot organogenesis and plant regeneration in Pityopsis ruthii. Plant Cell, Tissue and Organ Culture, 2011, 106, 513–516.

Descargas

Publicado

2021-12-20

Número

Sección

Ciências Florestais