Prospective Kindergarten and Primary teachers’ interpretative knowledge in giving meaning to students non-usual approach to the “usual” subtraction algorithm

Authors

  • Miguel Ribeiro UNICAMP

DOI:

https://doi.org/10.28998/2175-6600.2024v16n38pe16020

Keywords:

Interpretative Knowledge, MTSK, Subtraction, Tasks for Teacher Education, Primary

Abstract

The mathematics teacher's knowledge is considered specialized and this specialized mathematical and pedagogical knowledge sustains the mathematical practices. aiming to contribute for the discussions with students in the classroom to assume as a starting point what they know and how they know it about the mathematics that is intended to be discussed, it becomes essential for the teacher to be in possession of a knowledge allowing him to “listen to the student’s thinking” and interpret and give meaning to their productions, reasoning and ways of thinking. This will allow to take the pedagogical decisions in accordance with the defined goal of mathematical learning. Such knowledge is mathematics specialized knowledge named Interpretive Knowledge. This Interpretive Knowledge is not developed in practice, requiring teacher education contexts with such a purpose. Considering the context of subtraction, which is one of the topics in which students have difficulties, a Task for Teacher Education has been conceptualized and implemented, which served as an instrument for data collection with 26 prospective kindergarten and primary teachers. The results revealed prospective teachers are able to find the answer to the problem for students, but reveal knowledge associated with an almost exclusivity of an evaluative interpretation of students' ways of thinking, seeking a correspondence with their own way of proceeding in mathematics and a use of a mathematical language inadequately even to describe the steps taken.

Downloads

Download data is not yet available.

References

ASENOVA, M.; DEL ZOZZO, A.; SANTI, G. Unfolding teachers’ interpretative knowledge into semiotic interpretative knowledge to understand and improve mathematical learning in an inclusive perspective. Educational Science, v. 13, n. 65, 2023. https://doi.org/10.3390/educsci13010065

BALL, D.; THAMES, M.; PHELPS, G. Content knowledge for teaching: what makes it special? Journal of Teacher Education, v. 59, n. 5, p. 389-407, 2008.

BRASIL. Base Nacional Comum Curricular. Terceira Versão ed. Brasília-DF: Ministério da Educação, 2018.

BROCARDO, J; SERRAZINA, L; ROCHA, I. O Sentido de Número: reflexões que entrecruzam teoria e prática. Lisboa: Escola Editora, 2008.

CARRILLO, J.; CLIMENT, N.; MONTES, M.; CONTRERAS, L. C.; FLORES-MEDRANO, E.; ESCUDERO-ÁVILA, D.; RIBEIRO, M.; MUÑOZ-CATALÁN, M. C. The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, v. 20, n. 3, p. 236-253, 2018.

COONEY, T. J. Research on teacher education: In search of common ground. Journal for Research in Mathematics Education, v. 25, p. 608-636, 1994.

DAVIS, B.; SIMMT, E. Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, v. 61, p. 293-319, 2006.

DI MARTINO, P. MELLONE, M.; MINICHINI, C.; RIBEIRO, M. Prospective teachers' interpretative knowledge: giving sense to subtraction algorithms. In: Proceedings of Third ERME Topic Conference on Mathematics Teacher Education. p. 66-75. 2017.

DI MARTINO, P.; MELLONE, M.; RIBEIRO, M. Interpretative Knowledge. In: Encyclopedia of Mathematics Education.1 ed.: Springer International Publishing, 2020, p. 424-428.

DUVAL, R. A cognitive analysis of problems of comprehension in learning mathematics. Educational Studies in Mathematics, v. 61, p. 103-131, 2006.

FAUSTINO, A.C.; PASSO C. L. B. Cenários para investigação e resolução de problemas: reflexões para possíveis caminhos. Revista Educação e Linguagens, v. 2, n. 3, 62-74, 2013.

FIORENTINI, D; CRECCI, V.M. Metassíntese de pesquisas sobre conhecimentos/saberes na formação continuada de professores que ensinam matemática. Zetetiké (ON LINE), v. 25, p. 164-185, 2017.

FOSNOT, C. T.; DOLK, M. Young Mathematicians at Work: Constructing Number Sense, Addition, and Subtraction. Estados Unidos: Heinemann, 2001.

GROSSMAN, P. L. Learning to Practice: the design of clinical experience in teacher preparationAmerican Association of Colleges for Teacher Education and National Education Association, 2010.

HIEBERT, J.; WEARNE, D. “Instructional Task, Classroom Discourse, and Students’ Learning in Second Grade.” American Educational Research Journal, v. 30, 1993, p. 393-425.

HILL, H. C. et al. Mathematical Knowledge for Teaching and the Mathematical Quality of Instruction: An Exploratory Study. Cognition and Instruction, v. 26, n. 4, p. 430–511, 2008.

JAKOBSEN, A.; MELLONE, M.; RIBEIRO, M. A methodological approach to develop prospective teachers’ interpretative knowledge. In J. Hodgen, E. Geraniou, G. Bolondi. & F. Ferretti (Eds.), Proceed. of CERME 12 (pp. 3614– 3622). Free University of Bozen-Bolzano and ERME, 2022.

JAKOBSEN, A.; RIBEIRO, C. M.; MELLONE, M. Norwegian prospective teachers’ MKT when interpreting pupils’ productions on a fraction task. Nordic Studies in Mathematics Education, v. 19, n. 3-4, 2014, p. 135-150.

JAKOBSEN, A.; MELLONE, M.; RIBEIRO, C. M.; TORTORA, R.

Discussing secondary prospective teachers’ interpretative knowledge: a case study In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of PME 40 (Vol. 3, pp. 35-42). Szeged, Hungary: PME.

KAMII, C.; DOMINICK, A. The harmful effects of algorithms in grades 1-4. In L. J. Morrow & M. J. Kenney (Eds), The teaching and learning of algorithms in school mathematics, Resto, V A: NCTM, 1998, p. 130-140.

KAMII, C.; LEWIS, B.; KIRKLAND, L. Fluency in subtraction compared with addition. Journal of Mathematical Behaviour, v. 20, p. 33–42, 2001.

KILPATRICK, J. The Reasonable Ineffectiveness of Research in Mathematics Education. For the Learning of Mathematics, v. 2, n. 2, p. 22-29, 1981.

LAMPERT, M. What can research on teacher education tell us about improving quality in mathematics education? Teaching and Teacher Education, v. 4, p. 157-170, 1988.

LILJEDAHL, P.; OESTERLE, S. Teacher beliefs, attitudes, and self-efficacy in mathematics education. Encyclopedia of Mathematics Education. Springer Nethernands, p. 583-586, 2014.

MARTINS, F.; RIBEIRO, M. Atribuir sentido aos raciocínios associados às resoluções de alunos no caso da subtração In: Proceeding of the International Conference of Research, Practices and Contexts in Education, 2013. p.192 – 200.

MASON, J.; JOHNSTON-WILDER, S. Designing and using mathematical tasks. St Albans: Tarquin, 2006.

MELLONE, M.; RIBEIRO, M.; JAKOBSEN, A.; CAROTENUDO, G.; ROMANO, P.; PACELLI, T. Mathematics teachers’ interpretative knowledge of students’ errors and non-standard reasoning. Research in Mathematics Education, v. 22, n. 2, p. 154–167, 2020.

MELLONE, M. ; JAKOBSEN, A.; RIBEIRO, M.; PARLATI, A. Ethical dimension in the use of interpretative tasks in mathematics teacher education: division of fractions. In: Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). 2023. (aceite)

MELLONE, M.; TORTORA, R.; JAKOBSEN, A.; RIBEIRO, M. Prospective teachers interpret student responses: Between assessment, educational design and research In: Proceedings of CERME 10. Dublin: Institute of Education, Dublin City University, Ireland, and ERME, 2017. p. 2948 – 2955.

MUNOZ-CATALAN, M. C.; LINAN, M. M.; RIBEIRO, M. Conocimiento especializado para enseñar la operación de resta en Educación Infantil. Cadernos de Pesquisa (UFMA), v. 24, p. 4 - 19, 2017.

NYE, B.; KONSTANTOPOULOS, S.; HEDGES, L. V. How large are teacher effects? Educational Evaluation and Policy Analysis, v. 26, n. 3, p. 237-257, 2004.

PACELLI, T.; MELLONE, M.; RIBEIRO, M.; JAKOBSEN, A. Collective discussions for the development if interpretative knowledge in mathematics teacher education In: ICMI Study 25 – Teachers of mathematics working and learning in collaborative groups, 2020, Lisbon, v. 1. p. 388-395, 2020.

RIBEIRO, M. Abordagem aos números decimais e suas operações: a importância de uma eficaz navegação entre representações. Educação e Pesquisa (USP. Impresso), v.37, p. 407- 422, 2011.

RIBEIRO, M. Entender os sentidos da subtração para ensinar e aprender matemática com significado e prazer. Campinas, SP: Cognoscere, 2021, v. 2, p. 112.

RIBEIRO, M. Pensar matematicamente com um foco nas conexões entre Medida, Números e Operações e Pensamento Algébrico nos Anos Iniciais – discutindo algumas tarefas para a sala de aula. Campinas: Cognoscere, v. 1, 2022, p. 264.

RIBEIRO, M. Tareas para alumnos y tareas para la formación: discutiendo el conocimiento especializado del profesor y del formador de profesores de matemáticas. In: XX JORNADAS NACIONALES DE EDUCACIÓN MATEMÁTICA - SOCHIEM, 2016, Valparaíso: Chile. Anais... Valparaíso: Chile: [s.n.], 2016. p. 31-39

RIBEIRO, M.; ALMEIDA, A.; MELLONE, M. Conceitualizando Tarefas Formativas para Desenvolver as Especificidades do Conhecimento Interpretativo e Especializado do Professor. Perspectivas da Educação Matemática, v. 14, n. 34, p. 1 - 32, 2021.

RIBEIRO, M.; JAKOBSEN, A.; MELLONE, M. El Conocimiento Interpretativo en el contexto de la medición In: Investigación sobre conocimiento especializado del professor de matemáticas (MTSK): 10 años de caminho.1 ed. Madrid: Editorial DYKINSON, S.L., 2022, v. 1, p. 277-290.

RIBEIRO, C.M.; MELLONE, M.; JAKOBSEN, A. Interpreting students’ non standard reasoning: insights for mathematics teacher education practices. For the Learning of Mathematics, v. 36, n. 2, 2016, p. 8-13.

RIBEIRO, C. M.; MELLONE, M.; JAKOBSEN, A. Prospective teachers’ knowledge in/for giving sense to students’ productions. Atas do PME 37, v. 4, p. 89–96, 2013.

ROWLAND, T.; HUCKSTEP, P.; THWAITES, A. Elementary teachers' mathematics subject knowledge: the knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, v. 8, p. 255-281, 2005.

SHULMAN, L. Those who understand: Knowledge growth in teaching. Educational Researcher, v. 15, n. 2, 1986, p. 4-14.

TARDIF, M. Saberes docentes e formação profissional. Petrópolis: Vozes, 2002.

VILLARREAL, A.; ALBARRACÍN, L.; GORGÓRIO, N. Basic mathematical knowledge of students enrolling for primary education university degrees. In ICMI 13, Hamburgo.

Published

2024-01-22

How to Cite

RIBEIRO, Miguel. Prospective Kindergarten and Primary teachers’ interpretative knowledge in giving meaning to students non-usual approach to the “usual” subtraction algorithm. Debates em Educação, [S. l.], v. 16, n. 38, p. e16020, 2024. DOI: 10.28998/2175-6600.2024v16n38pe16020. Disponível em: https://seer.ufal.br/index.php/debateseducacao/article/view/16020. Acesso em: 24 nov. 2024.

Issue

Section

Dossiê: Formação de professores que ensinam Matemática: contextos e práticas

Similar Articles

<< < 87 88 89 90 91 92 93 94 95 96 > >> 

You may also start an advanced similarity search for this article.